18.785F16 Number Theory I Assignments: Problem Set 10

ثبت نشده
چکیده

(a) Prove that for each integer n > 1 there are infinitely many (Z/nZ)-extensions of Q ramified at only one prime. (b) Prove that for each integer n > 2 there are no (Z/nZ)2-extensions of Q ramified at only one prime. Why does this not contradict the fact that (Z/pZ)2-extensions of Qp exists for every p? (c) Given an explicit example of a (Z/2Z)2-extension of Q ramified at only one prime (with a defining polynomial), and prove that this example is unique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

18.785F16 Number Theory I Lecture 26 Notes: Global Class Field Theory, Chebotarev Density

(using the restricted product topology ensures that a 7→ a−1 is continuous, which is not true of the subspace topology). As a topological group, IK is locally compact and Hausdorff. The multiplicative group K× is canonically embedded as a discrete subgroup of IK via the diagonal map x 7→ (x, x, x, . . .), and the idele class group is the quotient CK := IK/K, which is locally compact but not com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016